Analysis of the Iterated Probabilistic Weighted K Nearest Neighbor Method, a new Distance-Based Algorithm

نویسندگان

  • José María Martínez-Otzeta
  • Basilio Sierra
چکیده

The k-Nearest Neighbor (k-NN) classification method assigns to an unclassified point the class of the nearest of a set of previously classified points. A problem that arises when aplying this technique is that each labeled sample is given equal importance in deciding the class membership of the pattern to be classified, regardless of the typicalness of each neighbor. We report on the application of a new hybrid version named Iterated Probabilistic Weighted k Nearest Neighbor algorithm (IPW-k-NN) which classifies new cases based on the probability distribution each case has to belong to each class. These probabilities are computed for each case in the training database according to the k Nearest Neighbors it has in this database; this is a new way to measure the typicalness of a given case with regard to every class. Experiments have been carried out using UCI Machine Learning Repository well-known databases and performing 10-fold cross-validation to validate the results obtained in each of them. Three different distances (Euclidean, Camberra and Chebychev) are used in the comparison done.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Novel Scheme for Improving Accuracy of KNN Classification Algorithm Based on the New Weighting Technique and Stepwise Feature Selection

K nearest neighbor algorithm is one of the most frequently used techniques in data mining for its integrity and performance. Though the KNN algorithm is highly effective in many cases, it has some essential deficiencies, which affects the classification accuracy of the algorithm. First, the effectiveness of the algorithm is affected by redundant and irrelevant features. Furthermore, this algori...

متن کامل

Software Cost Estimation by a New Hybrid Model of Particle Swarm Optimization and K-Nearest Neighbor Algorithms

A successful software should be finalized with determined and predetermined cost and time. Software is a production which its approximate cost is expert workforce and professionals. The most important and approximate software cost estimation (SCE) is related to the trained workforce. Creative nature of software projects and its abstract nature make extremely cost and time of projects difficult ...

متن کامل

Average-Case Analysis of a Nearest Neighbor Algorithm

In this paper we present an average-case analysis of the nearest neighbor algorithm, a simple induction method that has been studied by many researchers. Our analysis assumes a conjunctive target concept, noise-free Boolean attributes, and a uniform distribution over the instance space. We calculate the probability that the algorithm will encounter a test instance that is distance d from the pr...

متن کامل

A New Distance-weighted k-nearest Neighbor Classifier

In this paper, we develop a novel Distance-weighted k -nearest Neighbor rule (DWKNN), using the dual distance-weighted function. The proposed DWKNN is motivated by the sensitivity problem of the selection of the neighborhood size k that exists in k -nearest Neighbor rule (KNN), with the aim of improving classification performance. The experiment results on twelve real data sets demonstrate that...

متن کامل

An Improved K-Nearest Neighbor with Crow Search Algorithm for Feature Selection in Text Documents Classification

The Internet provides easy access to a kind of library resources. However, classification of documents from a large amount of data is still an issue and demands time and energy to find certain documents. Classification of similar documents in specific classes of data can reduce the time for searching the required data, particularly text documents. This is further facilitated by using Artificial...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004